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Motivation

In the case where the two class labels can be separated by a linear boundary, 
support vector classifier can be a good choice. But in situations where the 
data  cannot be separated by a linear boundary, we may need to explore more 
options. Consider the following figure where a linear boundary will not be able 
to separate the orange and red bubbles.
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What this means is that we need to consider non linear classifiers which may 
include quadratic or cubic polynomials.  For a quadratic polynomial the 
constraint equations will be

maximize  

Subject to

In the above case, we have considered a quadratic polynomial, but higher 
order polynomials can also be used to build a non linear classifier. 
Consequently, the higher order terms would also lead to heavy computation. 
Support vector machines finds a way to work in enlarged space without the 
computations becoming inefficient. 

Essentially in support vector machines, we are enlarging the feature space 
from the support vector classifier. So SVM is an extension of the SVC.  First 
let's look at the solution of the SVC optimization problem and then make some
changes to it in a way that it generalizes to higher order classifiers. 

The  solution to the SVC optimization problem mentioned in the second article 
can be written as:
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Here  is known as the inner product between  and  and is equal 

to 

  here is a new data point and we are calculating its inner product with each 
training observation  for  to . 

The parameters , ....  and  can be obtained by calculating the inner 
products  between all the training observations. Now the good part 
is that these  is non zero only for those training data point that is a Support 
Vector. Remember, support vectors are the data points that lie either on the 
margin or on the wrong side of it. So say from the total set of training 
observation data points a subset of these  are support vectors, then we only 
sum over these in the last equation, which we can rewrite as 

The choice of inner product used here uses the Pearson correlation to 
calculate the similarity of two observations. Now to generalize this, we can 
write the above equation as 

 here is called Kernel and is a function of  and 

In case of the Support vector classifier, it is just equal to the the inner product 
considered above, but it can take many other forms.

The following Kernel called Radial Kernel offers a more flexible decision 
boundary.
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 is a tuning parameter and decides how flexible the decision boundary will 
be. A high value of  will make the boundary too flexible, making it follow the 
noise instead of the signal and resulting in high variance and overfitting. 

If a training observation  is far from a new data point , then the euclidean 
distance  will be very large and thus the value of  will be 
very small. Essentially this particular training observation or any other training 
observations that are far from a new  data point, will not play a role in its 
classification since  will be tiny and hence  will not be impacted 
by such an 

Only those training observations that are close to the test data point will have 
an effect on its classification. Radial kernel has a local behavior. 

Reference
 An introduction to Statistical learning by Gareth James et al

γ

γ

xi x

(x −ij x )i j′
2 K(x,x )i

K(x,x )i f(x)
xi


