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Support Vector Machines Part 2

In Support Vector Machines Part 1, we looked at the concept of maximal margin 
hyperplane to divide the training observations into separate classes. In this part, 
we will look at it's limitations and the idea of Support Vector Classifiers. 

The problem with maximal margin hyperplane is that it can be very sensitive to 
individual training data points. Addition of one more training observation can shift 
the hyperplane too much. Lets look at the following figures.

In the left figure, we have the green hyperplane separating the data into two 
classes, now adding one more orange data point at a location shown in the left 
moves the green classifier to the new position which does not look very 
satisfactory for the following reasons 

 It's margin is small, so we have less confidence in its classification.

 It seems to be following noise rather than the signal aka Overfitting. 

The problem with such a classifier is that it might do very well on training data 
but will rate poorly on unseen test data. We would prefer a hyperplane that has a 
good training and testing accuracy over one that is excellent training but poor 
testing accuracy.  

So we are fine with misclassifying some of the training observations if it performs 
better on the remaining ones. This is exactly what a Support Vector Classifier 

https://www.notion.so/Support-Vector-Machines-Part-1-b5d25911ac694fb6bbb859fa295ba8ee


Support Vector Machines Part 2 2

does.

Support vector classifier enjoys a freedom to misclassify some observations by 
allowing them to cross the margin but also the hyperplane. The amount of 
freedom to do this is a hyperparameter that can be tuned.

Just like the maximal margin hyperplane, the Support vector classifier decides to 
classify the observation data based on which side of the hyperplane it lies.  The 
selected hyperplane may misclassify some of the data. We can find the 
hyperplane by solving for the following four constraints 

maximize 

                                                                    Optimization problem

Where M is the width of our margin and i stands for ith observation.  Let's talk 
about these equations next. 

The equation  along with 

ensures that the perpendicular distance of the ith data point is greater than or 
equal to the Margin. Now when we multiply  with  we are allowing 
some freedom in where this data point can lie with respect to the hyperplane. 

For  the point lies between the Margin and the hyperplane and for 
, the data point lies on the wrong side of the hyperplane. And of course for 
, the point lies on the correct side of the margin. These  are known as 

Slack variables. 

Let's talk about C now. C is a tuning parameter that decides how many points and 
by how much can they be misclassified. A high value of C would allow more data 
to be misclassified. So C kind of decides our tolerance level for misclassification. 
If C = m, then we can have at most m data points misclassified on the other side 
of the hyperplane ( ) 

since 
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Bias-variance trade-off

A low value of C means less tolerance for misclassification which means narrow 
margins which can overfit the data, hence low bias but high variance (overfitting). 
On the other hand, a large value of C will allow a higher number of 
misclassifications which means high bias but low variance. So C really controls 
the bias-variance trade-off.

Support vectors
One of the interesting feature of this optimization problem defined by the sets of 
equation above, is that the hyperplane separating the classes is affected by only 
those data points that either lie on the margin or on the wrong side of the margin. 
Those observations that lie on the correct side of the margin will not affect the 
classifier. Moving it around, as long as it does not cross the margin will not affect 
the position of the hyperplane. 

💡 These data points that lie either on the margin or on the wrong side of it 
are called support vectors. These support vectors determine the 
hyperplane. 

If we increase the value of C, then that means we have a large number of data 
points either on the margin or on the wrong side of, thus large number of support 
vectors. Thus by controlling C, we control the number of observations that have 
an impact on the classifier. 
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